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Abstract. We implement several symplectic integrators, which are
based on two part splitting, for studying the chaotic behavior of
one- and two-dimensional disordered Klein–Gordon lattices with many
degrees of freedom and investigate their numerical performance. For
this purpose, we perform extensive numerical simulations by consider-
ing many different initial energy excitations and following the evolution
of the created wave packets in the various dynamical regimes exhibited
by these models. We compare the efficiency of the considered integra-
tors by checking their ability to correctly reproduce several features of
the wave packets propagation, like the characteristics of the created
energy distribution and the time evolution of the systems’ maximum
Lyapunov exponent estimator. Among the tested integrators the fourth
order ABA864 scheme [S. Blanes et al., Appl. Numer. Math. 68, 58
(2013)] showed the best performance as it needed the least CPU time
for capturing the correct dynamical behavior of all considered cases
when a moderate accuracy in conserving the systems’ total energy
value was required. Among the higher order schemes used to achieve
a better accuracy in the energy conservation, the sixth order scheme
s11ABA82 6 exhibited the best performance.

1 Introduction

Disordered dynamical systems try to model heterogeneity appearing in nature due to
e.g. impurities, imperfections and defects. Typically, disorder is introduced by giving
random, uncorrelated values to one or more parameters of a system. A fundamental
phenomenon in disordered systems, which is usually referred as “Anderson local-
ization”, is the halting of energy propagation in the presence of sufficiently strong
disorder [1]. The appearance and/or the destruction of Anderson localization in linear
and nonlinear disordered systems, as well as the properties of energy propagation in
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such models, have attracted extensive attention in theory, numerical simulations and
experiments, especially in recent years [2–41].

Studies of disordered versions of two basic, nonlinear Hamiltonian lattice mod-
els, namely the Klein–Gordon (KG) oscillator lattice and the discrete nonlinear
Schrödinger equation (DNLS), revealed the existence of various dynamical behaviors,
the so-called “weak” and “strong chaos” spreading regimes, as well as the “selftrap-
ping” regime and determined the statistical characteristics of energy propagation and
chaos in these systems [12,13,15,17–19,23,24,26,30,32,33]. One basic outcome of these
studies is that energy propagation in disordered lattices is a chaotic process which,
in general, results in the destruction of Anderson localization.

Although our understanding of the mechanisms which govern energy spreading in
disordered nonlinear lattices has improved significantly over the last decade, many
important questions concerning mainly the asymptotic behavior of wave packets and
the effect of chaos on that behavior are still open. The numerical investigation of
these questions requires the accurate integration of Hamiltonian models with many
degrees of freedom (of the order of a few thousands) for very long times and for
several different disorder realizations in order to obtain solid and reliable statistical
results. This is a very demanding computational task, which will be greatly benefited
from the use of efficient integration techniques which could allow the accurate long
time integration of multidimensional Hamiltonians in feasible CPU times.

Symplectic integrators (SIs) are numerical techniques explicitly designed for the
integration of Hamiltonian systems and nowadays are used widely for this purpose
(see for example [42–46] and references therein). A basic characteristic of these inte-
grators is that they keep the error of the value of the Hamiltonian, i.e. the usually
called “energy”, bounded as time increases, in contrast to non-symplectic integrators
for which the error increases in time. This feature is of particular interest for the
long-time integration of disordered nonlinear lattices, as it guarantees the accurate
computation of the asymptotic behavior of such systems. In addition, the fact that
SIs can achieve this accuracy for relatively large integration time steps results in the
decrease of the required CPU time.

For all these reasons SIs based on splitting the system’s Hamiltonian in distinct,
integrable parts have already been used for the integration of the KG and DNLS
models [12,15,17,18,23,26,30,31,34,38,47,48]. In these studies SIs belonging mainly to
the so-called SABA schemes [49] were used. The numerical integration of the KG
system, both in one and two dimensions, proved to be computationally easier as
the KG models can be split in two integrable parts (the kinetic and the potential
energy), while the efficient integration of the DNLS models requires the splitting
of the corresponding Hamiltonian in three integrable parts [23,47,48]. As a result,
using the same computational resources and CPU times one can integrate the KG
models for times of one or two orders of magnitude longer than the times achieved for
the DNLS systems. For this reason ways to improve the efficiency of the symplectic
integration of the DNLS model were investigated in [47,48] where the performance of
several SIs based on three part splits, with different orders of accuracy, were studied
in detail.

A similar analysis for the KG model is lacking, and it is exactly this gap that the
current paper fills. In our study we consider a plethora of SIs of various orders not only
for the integration of the Hamilton equations of motion, which govern the evolution
of orbits in the system’s phase space, but also for the simultaneous integration of
the so-called “variational equations”, governing the time evolution of small deviation
vectors from the studied orbit. These deviation vectors are needed for characterizing
the system’s chaoticity through the computation of a chaos indicator [50], like the
maximum Lyapunov Characteristic Exponent (mLCE) [51–53] we consider in this
work. We note that our investigation includes both the one- and two-dimensional KG
models.
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The paper is organized as follows: in Section 2 we describe the two Hamiltonian
models we consider in our study, while in Section 3 after a brief introduction of the
basic properties of SIs we provide detailed information for the symplectic schemes
we include in our investigation. Then, in Section 4 we present our numerical results
on the performance of the various SIs we implemented. Finally, in Section 5 we
summarize our findings. In the Appendix the explicit form of several operators needed
for the symplectic integration of both the one- and two-dimensional KG models are
provided.

2 The Klein–Gordon lattice models

The one-dimensional (1D) KG lattice model of N coupled anharmonic oscillators is
described by the Hamiltonian

H1(~q, ~p) =
N∑
i=1

[
p2i
2

+
εi
2
q2i +

q4i
4

+
1

2W
(qi+1 − qi)2

]
, (1)

where ~q = (q1, q2, . . . , qN ) and ~p = (p1, p2, . . . , pN ) are respectively the generalized
positions (representing displacements of oscillators from their equilibriums) and
momenta, εi are parameters chosen uniformly from the interval [12 ,

3
2 ], which deter-

mine the on-site potentials, while W denotes the disorder strength. We also consider
fixed boundary conditions for this lattice, i.e. q0 = qN+1 = 0.

A natural, simple, extension of this model in two dimensions is obtained by
attributing a scalar displacement, qi,j , to each lattice site of a two-dimensional orthog-
onal arrangement of N ×M oscillators having N nodes in one direction (related to
index i) and M nodes in the other (related to index j). Then, the corresponding 2D
KG Hamiltonian is

H2(~q, ~p) =
M∑
j=1

N∑
i=1

{
p2i,j
2

+
εi,j
2
q2i,j +

q4i,j
4

+
1

2W

×
[
(qi+1,j − qi,j)2 + (qi,j+1 − qi,j)2

]}
, (2)

where pi,j is the generalized conjugate momentum of oscillator (i, j) and εi,j are
again chosen uniformly from the interval [ 12 ,

3
2 ]. Again fixed boundary conditions are

imposed so that q0,j = qi,0 = qN+1,j = qi,M+1 = 0 for i = 1, 2, . . . , N , j = 1, 2, . . . ,M .
The dynamics of Hamiltonian (1) was studied in [12,15,18,23,30,31,38], while

system (2) was considered in [26].

3 Symplectic integration schemes

The equations of motion of a Hamiltonian system H(~q, ~p) with m degrees of free-
dom can be written as d~z

dt = {~z,H} = LH~z, where ~z = (~q, ~p) and LH = {·, H} is
a differential operator with {·, ·} being the Poisson bracket defined by {F,G} =∑m
i=1

(
∂F
∂qi

∂G
∂pi
− ∂F

∂pi
∂G
∂qi

)
for any differentiable functions F (~z) and G(~z). The vec-

tor ~z corresponds to a point in the 2m-dimensional phase space of the system,
while its time evolution ~z(t) determines an orbit in that space. Using initial con-
ditions ~z(t0) at time t = t0 we can formally write the solution ~z(t0 + τ) of the

Hamilton equations of motion at time t = t0 + τ as ~z(t0 + τ) =
∑
i≥0

τ i

i! L
i
H~z(t0)
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= eτLH~z(t0). So eτLH is the operator which propagates in time the coordinate
vector ~z by τ time units. In general, the action of this operator is not known
analytically.

In many cases the Hamiltonian function H(~z) can be written as a sum of two
integrable parts, H(~z) = A(~z) +B(~z), so that the action of operators eτLA and eτLB

is known analytically. An explicit SI of order n, n ∈ N, approximates the action of
operator eτLH by a series of products of operators eaiτLA and ebiτLB , i.e.

eτLH = eτ(LA+LB) =

p∏
i=1

eaiτLAebiτLB +O(τn+1), (3)

where ai, bi, i = 1, 2, . . . , p, are appropriately chosen constants for obtaining the
desired order of accuracy. Usually the total number of applications of the simple
operators eaiτLA and ebiτLB is referred as the number of “steps” of the integrator.

Both the 1D (1) and the 2D (2) KG Hamiltonians, Hi(~q, ~p), i = 1, 2, can be written
as a sum of two integrable parts: the kinetic energy Ai(~p), which depends only on
the system’s momenta, and the potential energy Bi(~q), which is a function of only
the generalized positions, i.e. Hi(~q, ~p) = Ai(~p) + Bi(~q). Thus, SIs based on two part
splitting can be applied straightforwardly for the numerical integration of systems (1)
and (2).

Over the years several SIs of various orders and different number of steps have been
developed and implemented. SIs of higher order achieve better accuracy for the same
integration time step τ , but their implementation could require more computational
effort as they contain more steps than low order schemes. In our study we consider in
total 33 SIs whose order ranges from 2 up to 8. In the remaining part of this section
we briefly present all these SIs.

3.1 Symplectic integrators of order two

The simplest symmetric SI of order two is the so-called “leap frog” integrator (LF ) or
Störmer/Verlet integrator (see for example [54] and [42], Sect. I.3.1), having 3 steps

LF (τ) = ea1τLAeb1τLBea2τLA , (4)

with a1 = a2 = 1
2 and b1 = 1. In our study we also consider the second order, 5 step

schemes SABA2, SBAB2 [49] having respectively the forms

SABA2(τ) = ea1τLAeb1τLBea2τLAeb1τLBea1τLA , (5)

with a1 = 1
2 −

1
2
√
3
, a2 = 1√

3
, b1 = 1

2 , and

SBAB2(τ) = eb1τLBea1τLAeb2τLBea1τLAeb1τLB , (6)

for a1 = 1
2 , b1 = 1

6 and b2 = 2
3 , as well as the ABA82 SI [55,56] of 9 steps

ABA82(τ) = ea1τLAeb1τLBea2τLAeb2τLBea3τLAeb2τLBea2τLAeb1τLBea1τLA , (7)

whose coefficients ai, bi, i = 1, 2, 3 can be found in Table 2 of [56]. We note that the
ABA82 integrator is called SABA4 in [49].
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3.2 Symplectic integrators of order four

A way to construct higher order SIs is through a composition (i.e. successive appli-
cation) of lower order schemes. A composition approach of this kind was proposed
in [57]. According to that method, starting from a SI S2n(τ) of order 2n we construct
a SI S2n+2(τ) of order 2n+ 2 as

S2n+2(τ) = S2n(d1τ)S2n(d0τ)S2n(d1τ), (8)

where d0 = −21/(2n+1)/[2 − 21/(2n+1)] and d1 = 1/[2 − 21/(2n+1)]. We note that if
we start from a second order integrator S2 then the construction of the SI S2n+2

requires the application of S2 3n times. Obviously with this approach the number
of steps of the S2n+2 scheme grows rapidly when n increases, despite the fact that
adjacent applications of the same basic operators eaiτLA , or ebiτLB can be grouped
together.

Starting from a SI of order two we can apply the composition technique (8) for
n = 2 and create a SI of order four. If the second order SI used is the LF scheme (4)
the created SI has 7 steps and was introduced in [57,58]. We denote this integrator
by FR4. Its form is

FR4(τ) = ea1τLAeb1τLBea2τLAeb2τLBea2τLAeb1τLBea1τLA , (9)

with a1 = 1

2(2−21/3)
, a2 = 1−21/3

2(2−21/3)
, b1 = 1

2−21/3 , b2 = − 21/3

2−21/3 . Applying the com-

position (8) to the second order integrators SABA2 (5), SBAB2 (6) and ABA82 (7)
we obtain the fourth order schemes SABA2Y 4, SBAB2Y 4 and ABA82Y 4, having
13, 13 and 25 steps respectively.

In [49] it was shown that if the double Poisson bracket {B, {B,A}} leads to an
expression which can be seen as an integrable Hamiltonian, then the accuracy of the
SABA2 (5) and the SBAB2 (6) integrators can be improved by applying a corrector

term C(τ) = e−τ
3 c

2L{B,{B,A}} before and after the application of the main body of

these integrators. We note that c = (2−
√
3)

24 for SABA2 and c = 1
72 for SBAB2.

For the KG Hamiltonians (1) and (2) {B, {B,A}} depends only on the generalized
positions, so it corresponds to an integrable system and the corrector term C(τ) can
be written analytically. Thus, applying this corrector we get two SIs of order four,
which we name SABA2C and the SBAB2C, having 7 steps each.

In addition, we consider in our analysis the fourth order SIs ABA864 and
ABAH864 introduced in [56,59], which have 15 and 17 steps respectively. The values
of the coefficients ai, bi for the ABA864 and ABAH864 integrators can be found in
Tables 3 and 4 of [59] respectively.

3.3 Symplectic integrators of order six

Applying the composition technique (8) with n = 4 to the fourth order SIs FR4,
SABA2Y 4, SBAB2Y 4, ABA82Y 4, SABA2C and ABA864 we construct the sixth
order integrators FR4Y 6, SABA2Y 4Y 6, SBAB2Y 4Y 6, ABA82Y 4Y 6, SABA2CY 6
and ABA864Y 6 having 19, 37, 37, 73, 19 and 43 steps respectively.

In [57] a composition technique for creating a sixth order SI S6(τ), starting from
a second order SI S2(τ) was presented. This composition has the form

S6(τ) = S2(w3τ)S2(w2τ)S2(w1τ)S2(w0τ)S2(w1τ)S2(w2τ)S2(w3τ), (10)
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and requires less steps than the successive application of (8) first with n = 2 and
then with n = 4. In [57] three different sets of coefficients wi, i = 0, 1, 2, 3 were
given. In our study we implement the set described as “solution A” in Table
1 of [57] because according to [55] it shows the best performance among the
composition schemes presented in [57]. This set corresponds to the composition
method named s7odr6 in [60]. Applying the composition scheme (10) to the sec-
ond order integrators SABA2 (5), SBAB2 (6) and ABA82 (7) we obtain the sixth
order schemes SABA2Y 6, SBAB2Y 6 and ABA82Y 6, having 29, 29 and 57 steps
respectively.

We also consider the composition scheme named s9odr6b in [60], which is based
on 9 successive applications of S2(τ) in order to create a SI of order six

s9odr6b(τ) = S2(δ1τ)S2(δ2τ)S2(δ3τ)

×S2(δ4τ)S2(δ5τ)S2(δ4τ)S2(δ3τ)S2(δ2τ)S2(δ1τ), (11)

as well as, an 11 stage composition method presented in [61], which we call s11odr6

s11odr6(τ) = S2(γ1τ)S2(γ2τ), . . . , S2(γ5τ)S2(γ6τ)

×S2(γ5τ), . . . , S2(γ2τ)S2(γ1τ). (12)

The values of δi, i = 1, . . . , 5 of (11) can be found in the appendix of [60], while the
values γi, i = 1, . . . , 6 of (12) are reported in Section 4.2 of [61]. Using SABA2 (5)
as the second order SI S2 in (11) and (12) we get two SIs of order six, which we call
s9SABA26 and s11SABA26, having 37 and 45 steps respectively, while putting in
(11) and (12) the ABA82 (7) integrator we get the sixth order SIs s9ABA82 6 and
s11ABA82 6, having 73 and 89 steps respectively.

3.4 Symplectic integrators of order eight

Finally we include in our study some SIs of order eight which are based on appropriate
compositions of a second order integrator S2.

First we consider the composition scheme presented in [57], which contains
15 applications of S2. In particular, we implement the schemes referred to as “solution
A” and “solution D” in Table 2 of [57]. Using as S2 in these schemes the SABA2

(5) integrator we end up with two eighth order SIs which we name SABA2Y 8A and
SABA2Y 8D (corresponding to solutions A and D respectively), with each one of
them having 61 steps. Similarly, the use of ABA82 (7) in the place of S2 results to
the ABA82Y 8A and ABA82Y 8D schemes having 121 steps each.

In addition, we consider the composition scheme s15odr8 of [60] having 15 appli-
cations of S2 and the 19 stage method presented in Section 4.3 of [61], which requires
19 applications of S2. We call the latter scheme s19odr8. Using SABA2 (5) in the
place of S2 for both these techniques we get the eight order SIs s15SABA28 and
s19SABA28, having 61 and 77 steps respectively, while the use of the second order
SI ABA82 (7) gives two integrators of order eight, which we name s15ABA82 8 and
s19ABA82 8, having 121 and 153 steps respectively.

4 Numerical results

In order to investigate the performance of the various SIs presented in Section 3 we
follow the time evolution of different initial excitations of Hamiltonians (1) and (2)
by numerically solving their equations of motion. The efficiency of the considered
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SIs is checked by testing their ability to correctly reproduce several characteristics
of the resulting energy propagation. In addition, we quantify the systems’ chaoticity
by evaluating the mLCE, which is the most commonly used chaos indicator. For this
purpose we use the various SIs to also integrate the systems’ variational equations,
which govern, at first order approximation, the time evolution of an infinitesimal
perturbation (usually refereed as a deviation vector) from a considered orbit in the
systems’ phase space. This vector is needed for the computation of the mLCE Λ,
because Λ can be estimated as the limit for t→∞ of the quantity

L(t) =
1

t
ln

(
‖~w(t0 + t)‖
‖~w(t0)‖

)
, (13)

often called finite time mLCE, i.e. Λ = limt→∞ L(t) [51–53]. In (13) ~w(t0 + t) and
~w(t0) are deviation vectors from the studied orbit at times t0 and t0 + t respectively
(t > 0), while ‖ · ‖ denotes the usual vector norm. For autonomous Hamiltonian
systems like (1) and (2), L(t) converges to a positive value for chaotic orbits, while
for regular orbits it tends to zero as L(t) ∝ t−1 [53,62].

For a Hamiltonian system H(~z) = H(~q, ~p) with m degrees of freedom an ini-

tial deviation vector ~w(t0) = ( ~δz(t0)) = ( ~δq(t0), ~δp(t0)) having as coordinates small
changes from an orbit’s initial conditions evolves in time according to the variational
equations

d~w(t)

dt
=
[
J2m ·D2

H(~z(t))
]
· ~w(t0), (14)

where J2m =

[
0m Im
−Im 0m

]
with Im being the m × m identity matrix and 0m

being the m ×m zero matrix, and D2
H(~z(t)) is a 2m × 2m matrix with elements

D2
H(~z(t))i,j = ∂2H

∂zi∂zj

∣∣∣
~z(t)

, i, j = 1, 2, . . . , 2m. Since the elements of D2
H(~z(t)) explic-

itly depend on the system’s orbit, the variational equations (14) have to be integrated
together with the Hamilton equations of motion. According to the so-called “tangent
map method” [63–65] this task can be performed by using symplectic integration
schemes which are appropriately extended to integrate both sets of differential
equations together. From (3) we see that the dynamics induced by Hamiltonian
H can be approximated by successive applications of the dynamics produced by
the integrable Hamiltonians A and B through the application of operators eaiτLA

and ebiτLB . This decomposition of the dynamics can be extended also to the
evolution of deviation vectors through the successive applications of generalized
operators which propagate in time both the orbit and the deviation vector under
the action of Hamiltonians A and B. We denote these operators by eaiτLAV and
ebiτLBV . The explicit form of these operators for Hamiltonians (1) and (2) is given
in Appendix A.

4.1 One-dimensional KG model

In our numerical simulations we create a disorder realization for the 1D KG model (1)
having N = 1000 sites and we follow the evolution of different initial excitations up
to a final integration time tf = 107. Previous studies [12,15,18,19,23] have shown that
the 1D KG model can exhibit three main dynamical regimes: the weak chaos, strong
chaos and selftrapping regimes, depending on the choice of different parameter values
and initial excitations. In order to investigate the potential influence of these regimes
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on the performance of the various SIs we study six different cases of initial excitations
for t0 = 0. In particular, we consider the following cases:

Case A: we perform a single site excitation of a site at the middle of the lattice for
W = 4 and total energy H1A = 0.4.

Case B: we initially excite NI = 37 adjacent sites at the middle of the lattice for
W = 3 and total energy H1B = 0.37, so that the energy per initially exited
particle is H1B/NI = 0.01.

Case C: initial excitation of NI = 21 central sites for W = 4 and total energy
H1C = 4.2 (energy per initially exited particle H1C/NI = 0.2).

Case D: excitation of a single, central site for W = 4 and total energy H1D = 1.5.

Case E: initial excitation of NI = 100 central sites for W = 4 and total energy
H1E = 1.

Case F: all sites are initially excited for W = 4 and total energy H1F = 10.

We note that in cases of multiple site initial excitations the same amount of energy
is given to each excited site as kinetic energy. This is done by choosing the same,
appropriate value for the momentum of the initially excited sites, having a random
sign for each site, while all other momenta and positions are set to zero.

For each case we consider normalized energy distributions

Ei =

[
p2i
2

+
εiq

2
i

2
+
q4i
4

+
(qi+1 − qi)2

4W

]
/H1 , i = 1, 2, . . . , N, (15)

and evaluate their second moment m2 =
∑N
i=1(i − ī)2Ei and participation number

P = 1/
∑N
i=1E

2
i , with ī =

∑N
i=1 iEi. The efficiency of each SI is evaluated by check-

ing its ability to correctly reproduce the dynamics of the energy propagation. For
this reason we look at the shape of the computed energy profiles, as well as at
the time evolution of m2(t), P (t) and L(t). For the computation of the mLCE we
consider in each studied case a random initial deviation vector having nonzero coor-
dinates only for the initially excited sites. In addition we quantify the accuracy of our
computations by registering the time evolution of the absolute relative energy error
Er(t) = |[H1(t)−H1(t0 = 0) ]/H1(t0 = 0)|.

Cases A and B belong to the weak chaos regime, case C to the strong chaos regime,
while case D is a representative case of the selftrapping behavior. For all these cases
the energy does not reach the lattice’s boundaries up to the final integration time
tf of our simulations, because we want to mimic energy propagation in an infinite
lattice. Cases E and F correspond to extended initial excitations, which can reach
the fixed boundaries of the lattice during our simulations. We considered these two
cases in order to test the performance of the integration schemes also for some general
excitations where the majority or even all sites eventually become excited.

The 33 considered SIs in our study have different orders and various numbers
of steps. In order to compare their efficiency in correctly capturing the dynamics of
system (1) we adjust the integration time step τ of each scheme to achieve practically
the same level of accuracy. A typically acceptable level of accuracy in numerical
investigations of multidimensional disordered systems correspond to values Er . 10−4

[12,15,18,19,23]. Trying to improve a bit this accuracy we report in Table 1 the values
of τ which set the obtained energy accuracy at Er ≈ 10−5.

In Figure 1 we see results obtained for four integrators of Table 1, namely ABA82
(blue curves), ABA864 (red curves), SABA2Y 6 (green curves) and SABA2Y 8A
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Table 1. Information on the performance of several SIs of order n used for the integration
of the equations of motion of the 1D KG model (1) up to final time tf = 107 for the initial
excitation of case B (see text for more details). The number of steps of each SI is given
along with the integration time step τ used for obtaining an absolute relative energy error
Er ≈ 10−5. The required CPU time in seconds TC needed for each integrator is also reported.
All simulations were performed on an Intel Xeon E5-2623 with 3.00 GHz.

SI n Steps τ TC SI n Steps τ TC

ABA82 2 9 0.04 8528 SABA2Y 6 6 29 0.55 1402
SABA2 2 5 0.02 12779 s9SABA26 6 37 0.67 1406
SBAB2 2 5 0.02 14431 ABA864Y 6 6 43 0.65 1652
LF 2 3 0.01 32280 SBAB2Y 6 6 29 0.46 1747
ABA864 4 15 0.56 840 s9ABA82 6 6 73 0.93 1920
ABAH864 4 17 0.38 1349 FR4Y 6 6 19 0.18 3090
ABA82Y 4 4 25 0.26 2629 SABA2CY 6 6 19 0.37 3238
SABA2C 4 7 0.19 3351 SABA2Y 4Y 6 6 37 0.28 3366
SABA2Y 4 4 13 0.12 3560 SBAB2Y 4Y 6 6 37 0.28 3846
FR4 4 7 0.09 3310 SABA2Y 8A 8 61 0.20 7294
SBAB2Y 4 4 13 0.12 3835 ABA82Y 8A 8 121 0.22 12474
SBAB2C 4 7 0.14 4778

(brown curves) for case B. The values of used τ for each integrator results in keeping
the absolute relative energy error bounded at the level of Er ≈ 10−5 (Fig. 1a). All
integrators reproduce correctly the dynamical evolution of the system as the produced
results for m2(t) (upper curves of Fig. 1b) and P (t) (lower curves of Fig. 1b), as well
as the normalized energy profiles Ei at tf = 107 (Fig. 1c) practically overlap. It is
worth noting that the results of Figure 1b show that the second moment and the par-
ticipation number of the produced wave packet eventually grow as m2(t) ∝ t1/3 and
P (t) ∝ t1/6 respectively, in accordance to previously published works [12,15,18,23].
In Figure 1d we show the required CPU time TC needed by each SI for this simu-
lation. From this figure it becomes obvious that the ABA864 scheme has the best
performance as it requires the least CPU time.

In Figure 1 we presented results for the best performing integrators for each order
reported in Table 1. We note that although the results of Table 1 and Figure 1 were
obtained for the excitation of case B, the SIs have similar behaviors for all the other
studied cases.

From the results of Table 1 we see that the SIs exhibiting the best perfor-
mance (in descending order of efficiency) are: the fourth order schemes ABA864,
ABAH864 and the sixth order schemes SABA2Y 6, s9SABA26, ABA864Y 6. In
Figure 2 we present results based on the numerical solution of the variational
equations of Hamiltonian (1) which are obtained by these five integrators for the
weak chaos case B (Figs. 2a and 2b), as well as the extended excitation of case E
(Figs. 2c and 2d). From Figures 2a and 2c we see that the time evolution of the
finite time mLCE L(t) (13) is qualitative the same for all these SIs. We note
that in the weak chaos case B (Fig. 2a) the L(t) eventually tends to decrease in
a way which is very similar to the law L(t) ∝ t−1/4 reported in [30]. This law
is different than the L(t) ∝ t−1 behavior seen for regular orbits, denoting that
the strength of chaoticity decreases as the wave packet spreads without showing
any sign of crossover to regular dynamics [30]. On the other hand, for the fully
chaotic case E where all sites are initially excited, L(t) shows the typical behav-
ior of chaos as it saturates quite fast to a constant positive value (Fig. 2c). The
similarities of Figures 2b and 2d clearly show that the performance of the inte-
gration schemes does not depend on the system’s initial conditions and dynamical
regime.
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Fig. 1. Results for the integration of case B of Hamiltonian (1) by the SIs ABA82 of order
two, ABA864 of order four, SABA2Y 6 of order six and SABA2Y 8A of order eight [(b) blue;
(r) red; (g) green; (br) brown]: (a) the time evolution of the absolute relative energy error
Er(t), (b) the time evolution of the second moment m2(t) (upper curves) and participation
number P (t) (lower curves), (c) the logarithm of the normalized energy distribution Ei at
time tf = 107 as a function of lattice site index i, and (d) the time evolution of the required
CPU time TC(t) in seconds. The straight lines in (b) guide the eye for slopes 1/3 (dashed line)
and 1/6 (solid line). Panels (a), (b) and (d) are in log− log scale. In panels (a)–(c) the four
different curves practically overlap each other.

Fig. 2. Results obtained by the integration of the variational equations of Hamiltonian (1)
for cases B (panels (a) and (b)) and E (panels (c) and (d)) through the application of the
SIs ABA864, ABAH864, SABA2Y 6, s9SABA26, ABA864Y 6 ((r) red; (b) blue; (g) green;
(br) brown; (bl) black): the time evolution of L(t) (13) ((a) and (c)), and of the required
CPU time TC(t) [(b) and (d)]. All panels are in log− log scale. The straight dashed line in
(a) guides the eye for slope −1/4. The curves in (c) practically overlap, as well as the curves
for SABA2Y 6, s9SABA26 in (b) and (d).
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Fig. 3. Results for the integration of case B of Hamiltonian (1) by the SIs s11ABA82 6
(order six) for τ = 0.42, s15ABA82 8 (order eight) for τ = 0.48, s19ABA82 8 (order eight)
for τ = 0.59, SABA2Y 6 (order six) for τ = 0.18 and s9ABA82 6 (order six) for τ = 0.50 [(r)
red; (b) blue; (bl) black; (g) green; (br) brown]: the time evolution of the logarithm of (a)
Er(t), (b) m2(t) (upper curves) and P (t) (lower curves), (c) L(t) and (d) TC(t). All panels
are in log− log scale. The straight lines in (b) guide the eye for slopes 1/3 (dashed line) and
1/6 (solid line), while in (c) the straight dashed line corresponds to slope −1/4.

In Table 1 only 23 SIs of the 33 considered schemes are reported because
the remaining 10 SIs (ABA82Y 4Y 6, ABA82Y 6, s11SABA26, s11ABA82 6 of
order six and SABA2Y 8D, ABA82Y 8D, s15SABA28, s19SABA28, s15ABA82 8,
s19ABA82 8 of order eight) are unstable. This means that in order to get Er ≈ 10−5

they require a rather large integration time step τ , which is not appropriate for them
because they fail to keep the values of Er(t) bounded. Requiring a lower bounding
value for Er, e.g. Er ≈ 10−8 (which might not be necessarily needed in general inves-
tigations of disordered lattice dynamics), leads to smaller values of τ for which also
these integrators keep the Er values bounded. We note here that all SIs listed in
Table 1 can achieve Er ≈ 10−8 by appropriately lowering their integration time step.

By performing a similar analysis to the one presented in Figures 1 and 2
for Er ≈ 10−8 we find that the five best performing SIs (in descending order)
are s11ABA82 6 of order six, s15ABA82 8, s19ABA82 8 of order eight and
SABA2Y 6, s9ABA82 6 of order six. In Figure 3 we present results obtained
by these five schemes for case B. From Figure 3a we see that the integration
time step τ for each integrator was chosen so that Er ≈ 10−8. All integrators
succeeded in capturing the correct time evolution of m2(t), P (t) (Fig. 3b) and
L(t) (Fig. 3c) by producing results similar to the ones reported in Figures 1b
and 2a respectively. From the results of Figure 3d we see that all five SIs require
more CPU time than the best five schemes used to obtain Er ≈ 10−5 (Fig. 2b).

4.2 Two-dimensional KG model

We also study the performance of the various SIs for the case of the 2D KG
model (2). For our simulations we consider a two-dimensional N ×M lattice for
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N = M = 200 (note that this corresponds to a Hamiltonian system with
40 000 degrees of freedom!), create a disorder realization by attributing some ran-
dom values to the εi,j parameters in (2), which remain constant in our numerical
experiments, and follow the evolution of energy excitations and deviation vectors up
to tf = 106.

By solving the system’s equations of motion we keep track of the energy distri-
bution characteristics for three different cases of initial excitations. In particular, we
consider the following cases:

Case I: we perform a single site excitation of a site at the center of the lattice for
W = 10 and total energy H2I = 0.3.

Case II: similar to case I but for W = 10 and total energy H2II = 2.0.

Case III: all sites are initially excited, having the same amount of initial energy, for
W = 10 and total energy H2III = 10.

We note that case I corresponds to the system’s weak chaos regime and case II to the
selftrapping regime, while case III represents a general, extended initial excitation.
The dynamics of cases I and II was studied in [26].

As in the 1D case we consider two-dimensional normalized energy distributions

Ei,j =

{
p2i,j
2

+
εi,jq

2
i,j

2
+
q4i,j
4

+
1

4W

[
(qi+1,j − qi,j)2 + (qi,j+1 − qi,j)2

+(qi,j − qi−1,j)2+(qi,j−qi,j−1)2
]}

/H2 , i = 1, . . . , N, j = 1, . . . ,M, (16)

and evaluate their second moment m2 =
∑N
i

∑M
j ‖(i, j)− (̄i, j̄)‖2Ei,j and participa-

tion number P =
(∑N

i

∑M
j E2

i,j

)−1
, with (̄i, j̄) =

∑N
i=1

∑M
j=1(i, j)Ei,j . In addition,

by solving the system’s variational equations we follow the time evolution of devi-
ation vectors and compute, to the best of our knowledge for the first time, the
finite time mLCE (13) for this model. The initial deviation vector used has ran-
dom, nonzero coordinates only at a square of 4 × 4 = 16 sites at the center of the
lattice. Due to the complexity of the set of equations of motion and the variational
ones we explicitly present in the Appendix A the form of operators eτLAV2 (A.6)
and eτLBV2 (A.7) used in the various symplectic integration schemes, hoping that
they will be useful for researchers working on the dynamics of 2D KG models or
similar systems.

In Figure 4 we present results obtained for case I by implementing the five best
performing SIs among the studied schemes, when an absolute relative error Er ≈ 10−5

was required (Fig. 4c). These are the same five SIs which exhibited the best numerical
performance also for the 1D KG system (Fig. 2): ABA864, ABAH864 of order four,
and SABA2Y 6, s9SABA26, ABA864Y 6 of order six. All these integrators succeeded
in correctly capturing the dynamics of the system.

As the energy propagation takes place on a two-dimensional plane it is difficult
to visualize in a comparative way the energy distributions obtained by the different
integrators. For this reason we present in Figure 4a the energy profiles along the i
axis for sites having j = 100 and in Figure 4b along the j axis for sites with i = 100
at tf = 106. We clearly see that the profiles produced by the different integrators
practically coincide. Another piece of evidence that all schemes provide the same
results is the fact that very nearly they produce the same time evolution of m2(t)
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Fig. 4. Results for the integration of case I of Hamiltonian (2) by the SIs ABA864 (order
four) for τ = 0.56, ABAH864 (order four) for τ = 0.40, SABA2Y 6 (order six) for τ = 0.60,
s9SABA26 (order six) for τ = 0.60, ABA864Y 6 (order six) for τ = 0.68 ((r) red; (b) blue;
(g) green; (br) brown; (bl) black). The logarithm of the normalized energy distribution
(a) Ei,100 and (b) E100,j at time tf = 106 as a function of the lattice site index i and j
respectively. The time evolution of the logarithm of (c) Er(t), (d) m2(t), (e) L(t) and (f)
TC(t). Panels (c)–(f) are in log− log scale. The straight dashed line in (d) guides the eye
for slope 0.2, while in (e) for slope −1. In (f) the curves for ABAH864, SABA2Y 6 and
s9SABA26, ABA864Y 6 practically overlap each other.

(Fig. 4d), P (t) (not shown) and L(t) (Fig. 4e). From Figure 4d we see that eventu-
ally m2(t) ∝ t0.2 in agreement with the results presented in [26] for the weak chaos
case.

The evolution of L(t) in Figure 4e shows a power law decrease but with a rate
which is completely different than the L(t) ∝ t−1 decay (dashed line in Fig. 4e)
observed in the case of regular motion. This behavior indicates that the motion
becomes less chaotic in time but without showing any sign of a crossover to regular
dynamics. This is similar to what has been observed in the case of weak chaos of the
1D KG system [30] (see also Figs. 2a and 3c), where L(t) ∝ t−1/4. Figure 4e suggests
that L(t) ∝ t−ν with 0 < ν < 1, also for the 2D KG case, but the presented results
are not enough to provide an accurate estimation for ν as they are based only on one
disorder realization. A more detailed investigation of the evolution of L(t) for larger
integration times and many more disorder realizations and values of the system’s
parameters (e.g. total energy and disorder strength) is needed. We plan to address
this issue in a future publication.
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From Figure 4f we see that, as in the case of the 1D KG model (Fig. 2), the
best performing scheme is the SI ABA864 followed by the ABAH864, SABA2Y 6
and s9SABA26, ABA864Y 6 schemes, which behave similarly as their TC(t) vs. time
curves practically overlap. We also note that similar results to the ones presented in
Figure 4 were also obtained for cases II and III, showing again that the most efficient
integration scheme is the fourth order SI ABA864.

5 Summary and conclusions

We carried out a detailed analysis of the performance of several SIs, with orders rang-
ing from two up to eight, for the long time integration of the equations of motion and
the variational equations of the 1D (1) and the 2D (2) KG models. By performing
extensive numerical simulations we investigated the ability of 33 SIs to correctly cap-
ture the characteristics of energy propagation induced by different initial excitations
in these models, as well as to accurately quantify the systems’ chaoticity. In particu-
lar, we followed the time evolution of energy distributions and computed their second
moment and participation number along with the corresponding finite time mLCE,
by implementing each one of these SIs, registering also the CPU time they required.
Our results show that the behavior of the tested SIs does not depend on the nature
of the used initial excitations or the considered dynamical regime of the two lattice
models.

For both models the integrators ABA864, ABAH864 of order four and
SABA2Y 6, s9SABA26, ABA864Y 6 of order six, exhibited the best performance
when a moderate accuracy in the numerical conservation of the system’s energy
was required (i.e. the corresponding absolute relative energy error was Er ≈ 10−5),
with ABA864 [59] being always the most efficient one as it required the least CPU
time. This is indeed a very efficient SI as also three part split symplectic schemes
based on it showed the best performance among several SIs tested for the integra-
tion of the DNLS system [47,48]. Thus, we propose that the ABA864 SI should be
preferred for the long time integration of the 1D and 2D KG models over SIs of
the SABA family [49] which have been extensively used to date for such studies
[12,15,17,18,23,26]. This is a basic outcome of our study, which can be of prac-
tical importance for researchers working on lattice dynamics of disordered and
non-disordered systems.

Many of the considered sixth and eighth order SIs were not able to produce
reliable results for Er ≈ 10−5 because the required integration time step τ needed
for that purpose was rather high and made them unstable. These higher order SIs
can be used in cases where an even better accuracy is required than the typically
acceptable level of Er ≈ 10−5 used in disordered lattice studies. For Er ≈ 10−8 the
best performing schemes were the SIs s11ABA82 6, SABA2Y 6, s9ABA82 6 of order
six and s15ABA82 8, s19ABA82 8 of order eight, with s11ABA82 6 being the most
efficient one.

In our study we paid much attention to the integration of the variational
equations by SIs based on the “tangent map method” [63–65], because through
their solution we can evaluate the mLCE and quantify the system’s chaoticity.
For this reason we provide in the Appendix the explicit formulas of the opera-
tors needed for this task, both for the rather simple 1D KG system and the more
complicated case of the 2D KG model. Our results indicate that it is possible to
obtain the long time evolution of the finite time mLCE in feasible CPU times
for both the 1D and the 2D KG systems. For the 2D KG system in particular,
we evaluated the mLCE obtaining some numerical evidences (to the best of our
knowledge for the first time) that in the weak chaos regime the mLCE decreases
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to zero following a power law which is different than the t−1 law encountered
for regular orbits. This behavior is similar to what has been observed also in the
1D KG case [30]. A more detailed investigation of the behavior of the mLCE
for the different dynamical regimes appearing in the 2D KG model is needed in
order to derive reliable conclusions for the system’s chaoticity, something we plan
to address in the near future. The SIs presented in our work can facilitate the
realization of this goal as they managed to speed up considerably the needed
computations.

Ch.S. was supported by the National Research Foundation of South Africa (Incentive Fund-
ing for Rated Researchers, IFRR and Competitive Programme for Rated Researchers,
CPRR). We thank J.D. Bodyfelt for fruitful discussions and K.B. Mfumadi for checking
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Appendix A: The eτLAV and eτLBV operators

We present here the explicit form of operators eτLAV and eτLBV used for the time

propagation of an orbit and a deviation vector with initial conditions (~q, ~p, ~δq, ~δp)

at time t0 to their final values (~q′, ~p′, ~δq
′
, ~δp
′
) at time t0 + τ for Hamiltonians (1)

and (2).

A.1 The one-dimensional KG model

The equations of motion of the 1D KG model (1) are

dqi
dt

= pi, for 1 ≤ i ≤ N

dp1
dt

= −
[
ε1q1 + q31 +

1

W
(2q1 − q2)

]
dpi
dt

= −
[
εiqi + q3i +

1

W
(2qi − qi−1 − qi+1)

]
, for 2 ≤ i ≤ N − 1

dpN
dt

= −
[
εNqN + q3N +

1

W
(2qN − qN−1)

]
, (A.1)

while the corresponding variational equation (14) have the form

dδqi
dt

= δpi, for 1 ≤ i ≤ N

dδp1
dt

= −
[
δq1
(
ε1 + 3q21

)
+

1

W
(2δq1 − δq2)

]
dδpi
dt

= −
[
δqi
(
εi + 3q2i

)
+

1

W
(2δqi − δqi−1 − δqi+1)

]
, for 2 ≤ i ≤ N − 1

dδpN
dt

= −
[
δqN

(
εN + 3q2N

)
+

1

W
(2δqN − δqN−1)

]
. (A.2)
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In order to implement the SIs of Section 3 for the simultaneous integration of
equations (A.1) and (A.2) we split Hamiltonian (1) in two integrable parts

A1(~p) =
N∑
i=1

p2i
2
, B1(~q) =

N∑
i=1

[
εi
2
q2i +

q4i
4

+
1

2W
(qi+1 − qi)2

]
, (A.3)

i.e. the system’s kinetic and potential energy respectively. The solution of the Hamil-
ton equations of motion and the variational ones for Hamiltonians A1 and B1 are
obtained through the action of the operators

eτLAV1 :


q′i = qi + τpi
p′i = pi
δq′i = δqi + τδpi
δp′i = δpi

, for 1 ≤ i ≤ N, (A.4)

and

eτLBV1 :



q′i = qi, for 1 ≤ i ≤ N

p′1 = p1 − τ
[
ε1q1 + q31 + 1

W
(2q1 − q2)

]
p′i = pi − τ

[
εiqi + q3i + 1

W
(2qi − qi−1 − qi+1)

]
,

for 2 ≤ i ≤ N − 1

p′N = pN − τ
[
εNqN + q3N + 1

W
(2qN − qN−1)

]
δq′i = δqi, for 1 ≤ i ≤ N

δp′1 = δp1 − τ
[
δq1
(
ε1 + 3q21

)
+ 1

W
(2δq1 − δq2)

]
δp′i = δpi − τ

[
δqi
(
εi + 3q2i

)
+ 1

W
(2δqi − δqi−1 − δqi+1)

]
,

for 2 ≤ i ≤ N − 1

δp′N = δpN − τ
[
δqN

(
εN + 3q2N

)
+ 1

W
(2δqN − δqN−1)

]
.

(A.5)

Note that the first half of the equations of operators (A.4) and (A.5) correspond
respectively to the operators eτLA1 and eτLB1 needed for the integration of only the
system’s equations of motion.

A.2 The two-dimensional KG model

The 2D KG Hamiltonian (2) can also be written as the sum of two integrable systems:
the kinetic energy A2(~p) and the potential energy B2(~q). In this case the propagation
operators for the solution of the equations of motion and the variational equations
have more complicated forms with respect to the 1D case and are given by the
following expressions

eτLAV2 :


q′i,j = qi,j + τpi,j
p′i,j = pi,j
δq′i,j = δqi,j + τδpi,j
δp′i,j = δpi,j

, for 1 ≤ i ≤ N, 1 ≤ j ≤M, (A.6)
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and

eτLBV2 :



q′i,j = qi,j , for 1 ≤ i ≤ N, 1 ≤ j ≤M

p′1,1 = p1,1 − τ
[
ε1,1q1,1 + q31,1 + 1

W
(4q1,1 − q2,1 − q1,2)

]
p′1,M = p1,M − τ

[
ε1,Mq1,M + q31,M + 1

W
(4q1,M − q1,M−1 − q2,M )

]
p′N,1 = pN,1 − τ

[
εN,1qN,1 + q3N,1 + 1

W
(4qN,1 − qN−1,1 − qN,2)

]
p′N,M = pN,M − τ

[
εN,MqN,M + q3N,M + 1

W
(4qN,M − qN−1,M − qN,M−1)

]
p′i,j = pi,j − τ

[
εi,jqi,j + q3i,j + 1

W
(4qi,j − qi−1,j − qi,j−1

−qi+1,j − qi,j+1)] , for 2 ≤ i ≤ N − 1, 2 ≤ j ≤M − 1

p′i,1 = pi,1 − τ
[
εi,1qi,1 + q3i,1 + 1

W
(4qi,1 − qi−1,1 − qi+1,1 − qi,2)

]
,

for 2 ≤ i ≤ N − 1

p′i,M = pi,M−τ
[
εi,Mqi,M+q3i,M+ 1

W
(4qi,M − qi−1,M−qi,M−1 − qi+1,M )

]
,

for 2 ≤ i ≤ N − 1

p′1,j = p1,j − τ
[
ε1,jq1,j + q31,j + 1

W
(4q1,j − q1,j−1 − q2,j − q1,j+1)

]
,

for 2 ≤ j ≤M − 1

p′N,j = pN,j−τ
[
εN,jqN,j+q

3
N,j+

1
W

(4qN,j − qN−1,j − qN,j−1−qN,j+1)
]
,

for 2 ≤ j ≤M − 1

δq′i,j = δqi,j , for 1 ≤ i ≤ N, 1 ≤ j ≤M

δp′1,1 = δp1,1 − τ
[
δq1,1

(
ε1,1 + 3q21,1

)
+ 1

W
(4δq1,1 − δq2,1 − δq1,2)

]
δp′1,M = δp1,M−τ

[
δq1,M

(
ε1,M + 3q21,M

)
+ 1
W

(4δq1,M−δq1,M−1 − δq2,M )
]

δp′N,1 = δpN,1 − τ
[
δqN,1

(
εN,1 + 3q2N,1

)
+ 1

W
(4δqN,1 − δqN−1,1 − δqN,2)

]
δp′N,M = δpN,M − τ

[
δqN,M

(
εN,M + 3q2N,M

)
+ 1

W
(4δqN,M

−δqN−1,M − δqN,M−1)]

δp′i,j = δpi,j − τ
[
δqi,j

(
εi,j + 3q2i,j

)
+ 1

W
(4δqi,j − δqi−1,j − δqi,j−1

−δqi+1,j − δqi,j+1)] , for 2 ≤ i ≤ N − 1, 2 ≤ j ≤M − 1

δp′i,1 = δpi,1 − τ
[
δqi,1

(
εi,1 + 3q2i,1

)
+ 1

W
(4δqi,1 − δqi−1,1

−δqi+1,1 − δqi,2)] , for 2 ≤ i ≤ N − 1

δp′i,M = δpi,M − τ
[
δqi,M

(
εi,M + 3q2i,M

)
+ 1

W
(4δqi,M − δqi−1,M

−δqi,M−1 − δqi+1,M )] , for 2 ≤ i ≤ N − 1

δp′1,j = δp1,j−τ
[
δq1,j

(
ε1,j+3q21,j

)
+ 1
W

(4δq1,j−δq1,j−1−δq2,j−δq1,j+1)
]
,

for 2 ≤ j ≤M − 1

δp′N,j = δpN,j − τ
[
δqN,j

(
εN,j + 3q2N,j

)
+ 1

W
(4δqN,j − δqN−1,j

−δqN,j−1 − δqN,j+1)] , for 2 ≤ j ≤M − 1.

(A.7)
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